RE-FORMULATING THE OLD TRETINOIN: UNIQUE MICROENCAPSULATED BENZOYL PEROXIDE COMBINATION PRODUCT FOR ACNE VULGARIS

Hilary Baldwin, MD¹; Omar Noor, MD²; J.M. Jackson, MD³; Guy Webster, MD⁴; Maya Erlich, PhD⁵; Krysten Lisella Arekapudi, FNP-C, DNP⁶; James J. Leyden, MD⁻

¹The Acne Treatment & Research Center, Brooklyn, NY; ²Rao Dermatology, New York, NY; ³University of Louisville, Louisville, KY; ⁴Jefferson Medical College, Landenberg, PA; ⁵Sol-Gel Technologies, Ness Ziona, Ísrael; ⁶Galderma US, Dallas, TX; ⁷University of Pennsylvania, Philadelphia, PA

INTRODUCTION

- Topical tretinoin was approved by the United States Food and Drug Administration (FDA) in 1971 for the treatment of acne
- The American Academy of Dermatology (AAD) and Global Alliance to Improve Outcomes in Acne (Global Alliance) recommend the use of a topical retinoid alone or in combination with benzoyl peroxide (BPO) as first-line treatment of all severities of inflammatory and non-inflammatory acne^{1,2}
- Historically, tretinoin use within acne has been limited by poor tolerability and molecular
- Tretinoin 0.1% has a higher rate of irritant adverse events (AEs) than lower concentrations
- When used concurrently with benzoyl peroxide (BPO), the unencapsulated tretinoin molecule is unstable and is oxidized by the BPO
- New technology may allow tretinoin use in patient populations and clinical situations that were previously not feasible⁵

Tretinoin Use in Clinical Practice

- Acne and acne sequelae
- Tretinoin is comedolytic and anti-inflammatory⁶
- Tretinoin has shown significant clinical improvement in inflammatory acne and decreases comedones⁷
- Preadolescent patients
- Three tretinoin products have FDA approval for preadolescents: tretinoin 0.05% gel (≥10 years of age), tretinoin 0.05% lotion (≥9 years of age), and a combination cream containing silica-microencapsulated 0.1% tretinoin with 3% BPO (≥9 years of age)⁸⁻¹⁰
- Data from 4 pivotal studies evaluating tretinoin in preadolescent subjects show high efficacy, good tolerability, and no new safety signals¹¹⁻¹³

Tretinoin

Crystals

Figure 1. Process of Microencapsulation for BPO and Tretinoin²⁴

- American Academy of Dermatology and American Academy of Pediatrics evidencebased guidelines note that tretinoin and BPO can be safely used for acne management in preadolescent patients^{2,14}
- Patients with skin of color
- An 8-week study of 27 Black subjects with acne showed a significant decrease in papules, pustules, and hyperpigmentation in 83% of subjects treated with tretinoin 0.025% cream compared with a 13% reduction with vehicle. In this study, skin irritation and inflammation were comparable with active treatment and vehicle 19
- A post-hoc analysis of 308 Black, 69 Asian, and 766 Hispanic subjects treated with tretinoin 0.05% lotion found it was effective, safe, and well tolerated for the treatment of acne with a low incidence of reported adverse events¹⁶⁻¹⁸

Role of Tretinoin in Limiting Antibiotic Use

- · If topical or oral antibiotics are necessary to treat acne, the AAD guidelines recommend antibiotic use for a maximum of 3-4 months and a concomitant retinoid²
- The AAD recommends a topical retinoid as first-line treatment of acne of all severities and after completion of antibiotic therapy as maintenance therapy²
- One study found that monotherapy with a topical retinoid had similar efficacy to a topical retinoid plus oral minocycline, after 12 weeks of maintenance therapy¹⁹
- After 24 weeks of treatment, >80% of subjects in each group maintained a ≥50% global improvement in acne from baseline

OBJECTIVE

• Determine if a re-formulated combination of microencapsulated tretinoin 0.1% and microencapsulated BPO 3% (E-BPO/T) provides a stable and well tolerated product

Historical Limitations of Unencapsulated Tretinoin

- Unencapsulated tretinoin use has historically been limited by cutaneous tolerability issues (ie, dryness, peeling, scaling, erythema, pruritis, pain)^{2,3}
- Tretinoin can increase sun sensitivity and it is therefore recommended to avoid sun exposure and/or wear sunscreen/sun-protective clothing while using tretinoin^{20,21}
- Unencapsulated tretinoin is unstable and rapidly degraded in the presence of light⁴
- Unencapsulated tretinoin is easily oxidized by BPO, reducing effectiveness.²² This is problematic since a topical retinoid plus BPO is recommended as first-line treatment of inflammatory and noninflammatory acne of all severities²
- Historically, concurrent use of tretinoin and BPO has not been possible; the products need to be applied at different times potentially reducing compliance^{2,23}

Tretinoin Encapsulation Technology

- The Sol-Gel process allows microencapsulation of active drug molecules within a silicabased shell. This extends drug release time and may reduce skin irritation while enhancing efficacy^{13,24} (Figure 1)
- The Sol-Gel process controls the release rate of the active ingredient to the skin
- Encapsulation technology allows, for the first time, a chemically stable fixed-dose combination of tretinoin and BPO for acne treatment

METHODS

- E-BPO/T cream combines microencapsulated tretinoin 0.1% and microencapsulated
- Tretinoin crystals and BPO crystals are separately encapsulated in silica core shell structures, enabling inclusion of both actives in one cream¹⁰
- Silica shells control the rate at which the active ingredients are released, allowing efficacy while helping to reduce AEs and optimizing tolerability¹³

RESULTS

- Two Phase 3, multicenter, double-blind, randomized studies of once daily application of E-BPO/T cream (n=571) or vehicle cream (n=287)
- E-BPO/T was found superior to vehicle on Investigator's Global Assessment (IGA) success rate, absolute mean change in inflammatory lesions (IL), and absolute mean change in non-inflammatory lesions (NIL) from baseline to Week 12 (Table 1)
- IGA success became significant at Week 8; mean NIL reduction was significant at Week 2 in both studies
- Nearly all AEs were mild or moderate in severity (Table 2)
- Mean tolerability parameters (including erythema, dryness, scaling, pigmentation, itching, burning, and stinging) of both E-BPO/T and vehicle stayed below 1 (scale of 0-3) and were not statistically different. Erythema, scaling, and dryness all peaked below mild at Week 2, and then decreased in severity

Table 2. E-BPO/T Phase 3 Trials¹⁰ Tolerability Assessment Results at Week 12

		Study 1		Study 2		
Percent	Mild	Moderate	Severe	Mild	Moderate	Severe
Erythema	33.0	6.9	0.2	26.9	8.0	0
Pigmentation	27.3	6.3	0.4	26.5	4.5	0
Dryness	22.3	5.3	0.4	16.7	2.3	0
Scaling	16.4	2.6	0	12.9	0.8	0
Burning	5.9	2.2	0	3.4	0.8	0
Itching	11.1	1.8	0	8.7	2.7	0
Stinging	5.3	0.2	0	1.9	1.1	0
	•		•		•	

Table 1. Phase 3 Trials Efficacy Results¹⁰

	Study 1		Study 2				
	E-BPO/T Cream (N=281)	Vehicle (N=143)	E-BPO/T Cream (N=290)	Vehicle cream (N=144)			
IGA success*	39.9%	14.3%	26.8%	15.1%			
95% CI	17.1%, 34.2%		3.6%, 19.7%				
Mean absolute change in IL from baseline [†]	-21.6	-14.8	-16.2	-14.1			
95% CI	-9.1, -4.6		-3.9, -0.4				
Mean absolute change in NIL from baseline [†]	-29.7	-19.8	-24.2	-17.4			
95% CI	-13.0, -6.8		-9.9, -3.7				
CI = confidence interval; IGA = Investigator's Global Assessment; IL = inflammatory lesion; NIL = noninflammatory lesion. *IGA success was defined as an IGA score of 0 ("clear") or 1 ("almost clear") with at least a 2-grade reduction from baseline. †Means presented are least square means.							

SUMMARY

- E-BPO/T is a combination of microencapsulated tretinoin 0.1% and microencapsulated BPO 3% that is FDA approved for once daily use in patients ≥9 years of age for the treatment of acne
- Unique microencapsulation technology enables combining BPO 3% and tretinoin 0.1% into one cream for concurrent use of both actives for acne treatment with a manageable tolerability profile

Figure 2. Subject Treated with E-BPO/T in Clinical Study

- Thiboutot DM, Dréno B, Abanmi A, et al. Practical management of acne for clinicians: An international consensus from the Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol. 2018 Feb;78
- aenglein AL, et al. Guidelines of care for the management of acne vulgaris [published correction appears in JAm Acad Dermatol. 2020;82(6):1576]. JAm Acad Dermatol. 2016;74(5):945-73.e33.
- Baldwin HE, Nighland M, Kendall C, et al. 40 years of topical tretinoin use in review. *J Drugs Dermatol.* 2013 Jun 1;12(6):638-42 Shroot B. Further light is shed on topical therapy. *J Invest Dermatol.* 2003 Sep;121(3):xiii-xiv. Latter G, Grice JE, Mohammed Y, et al. Targeted Topical Delivery of Retinoids in the Management of Acne Vulgaris: Current Formulations and Novel Delivery Systems. Pharmaceutics. 2019 Sep 24;11(10):490.
- chmidt N, Gans ÉH. Tretinoin: A Review of Its Anti-inflammatorý Properties in the Treatment of Acne. J Clin Aesthet Dermatol. 2011 Nov;4(11):22-9 Leyden JJ, Shalita A, Thiboutot D, et al. Topical retinoids in inflammatory acne: a retrospective, investigator-blinded, vehicle-controlled, photographic assessment. Clin Ther. 2005 Feb;27(2):216-24
- Atralin. Prescribing information. Valeant Pharmaceuticals North America. Revised August 2014. Accessed May 1, 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022070s003lbl.pdf Altreno. Prescribing information. Valeant Pharmaceuticals North America. Revised August 2018. Accessed May 1, 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209353s000lbl.pdf Twyneo. Prescribing information. Sol-Gel Technologies. Revised July 2021. Accessed May 1, 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214902s000lbl.pdf Eichenfield LF, Matiz C, Funk A, et al. Study of the efficacy and tolerability of 0.04% tretinoin microsphere gel for preadolescent acne. Pediatrics. 2010 Jun;125(6):e1316-2
- henfield LF, Sugarmán JL, Guenin E, et ál. Novel tretinóin 0.05% lotion for the once-daily treatment of moderate-to-severe acne vulgaris in a preadolescent population. Pediatr Dermatol. 2019 Mar;36(2):193-193 /ebster GF, Sugarman J, Levy-Hacham O, et al. Microencapsulated Benzoyl Peroxide and Tretinoin for the Treatment of Acne Vulgaris: Results from a Phase 2 Multicenter, Double-Blind, Randomized, Vehicle Controlled Study, Skinmed, 2020 Dec 1:18(6):343-351.
- 4. Eichenfield LF, Krakowski AC, Piggott C, et al. American Acne and Rosacea Society. Evidence-based recommendations for the diagnosis and treatment of pediatric acne. Pediatrics. 2013 May;131 Suppl 3:S163-865. Halder RM. The role of retinoids in the management of cutaneous conditions in blacks. J Am Acad Dermatol. 1998 Aug;39(2 Pt 3):S98-103. Bhatia ND, Werschler WP, Cook-Bolden FE, et al. Tolerability of tretinoin lotion 0.05% for moderate to severe acne vulgaris: a post hoc analysis in a black population. Cutis. 2020 Jul;106(1):45-50;E1 Cook-Bolden FE, Weinkle SH, Guenin E, et al. Novel Tretinoin 0.05% Lotion for Once-Daily Treatment of Moderate-to-Severe Acne Vulgaris in a Hispanic Population. J Drugs Dermatol. 2019 Jan 1;18(1):32-38
- . Han G, Armstrong AW, Desai SR, et al. Novel Tretinoin 0.05% Lotion for the Once-Daily Treatment of Moderate-to-Severe Acne Vulgaris in an Asian Population. J Drugs Dermatol. 2019 Sep 1;18(9):910-916 D. Leyden J, Thiboutot DM, Shalita AR, et al. Comparison of tazarotene and minocycline maintenance therapies in acne vulgaris: a multicenter, double-blind, randomized, parallel-group study. Arch Dermatol. 2006 Webster GF, Rawlings AV, eds. Acne and Its Therapy. CRC Press; 2007.
- Zaenglein AL. Topical retinoids in the treatment of acne vulgaris. Semin Cutan Med Surg. 2008 Sep;27(3):177-82. Dge' LK, Broussard A, Marshall MD. Acne Vulgaris: Diagnosis and Treatment. Am Fam Physician. 2019 Oct 15;100(8):475-484.
- Del Rosso JQ, Pillai R, Moore R. Absence of Degradation of Tretinoin When Benzoyl Peroxide is Combined with an Optimized Formulation of Tretinoin Gel (0.05%). J Clin Aesthet Dermatol. 2010 Oct; 3(10):26-8 . Erlich M, Arie T, Koifman N, et al. Structure elucidation of silica-based core-shell microencapsulated drugs for topical applications by cryogenic scanning electron microscopy. J Colloid Interface Sci. 2020 Nov Galderma data on file.

- **Microencapsulation** of BPO **BPO Crystal** Silica Shell Crystal Coated Formation Silica with Surfacant Monomers Approaching
 - Tretinoin Crystals **Immersed**

in Oil and Silica

- Silica Monomers Migrate to Oil/Water Interface
- Silica Shell Formation
- Release of Tretinoin Through Microchannels in Silica

Release of BPO

Through

Microchannels

in Silica

Microencapsulation

of tretinoin