

Outline ■ Lentigo Maligna ■ Use of Confocal ■ Clinical and pathologic features as predictors for subclinical extension of MIS and invasive melanoma ■ Staged Excisions ■ MITF vs MART1 ■ Merkel Cell Carcinoma ■ PD-1 Blockade ■ CTLA4 blockade

In Vivo and Ex Vivo Confocal Microscopy for

- Confocal Microscopy: modern imaging device offering quasihistologic view of a given skin tumor
 Use in tumor margins assessment
 • reflectance mode (in vivo on skin patient)
 • fluorescence mode (on freshly excised specimen)

- In vivo reflectance confocal microscopy (RCM) has been used as an add-on tool for bedside lentigo maligna and basal cell mapping and monitoring

Basal Cell Carcinoma

- Cancer margins marked out utilizing dermoscopy, then rechecked using RCM
 RCM showed BCC outside of pre-surgical mark in 30% of lesions
 Deep tumor margin could not be assessed due to limited depth laser penetration
 Not as useful for sclerosing or infiltrative BCC

- Rapid detection of residual tumor in a surgical wound

 - Useful
 Need a smaller microscope head with an automated approach for imaging the entire wound in a rapid and controlled manner

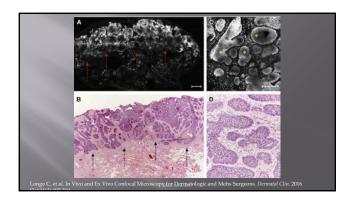
 | Description of the Control of th

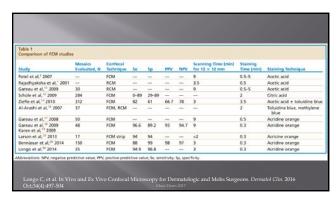
Lentigo Maligna

- Subtype of melanoma in situ, defined by a predominant lentiginous growth pattern of melanocytes as solitary units at the DEJ in chronically sun-damaged skin
- Ill-defined borders with the potential for significant subclinical extension
- Delineating LM preoperatively can be challenging due to several

 - Background sun-damaged skin
 Intrinsic early changes of tumor composed of single atypical melanocytic proliferation

- Margins were clinically, with dermoscopic exam, marked and RCM was then obtained in 4 radial directions (no more than 4 d/t time constraints)
- - 4 false positives of RCM diagnosing LM, but not consistent histologically
 5 false negatives (LM histologically, without RCM evidence)
- ☐ Conclude this is reliable and easy method for presurgical margin


- RCM used to monitor response of LM to nonsurgical treatment
- Identified 70% of all responders with no false-negative results
- When compared with histopathology, no significant difference in evaluating the response to imiquimod


Ex Vivo Fluorescent Confocal Microscopy

- FCM used on freshly excised tumors
- Different fluorophores can be used at different wavelengths

 Acridine orange is most common given excellent contrast

- Acridine orange is most common given excellent contrast
 Basal cell carcinoma
 FCM correlates very well with frozens with more info
 Analyzes fat lissue and other structures that can be altered in frozen Mohs processing
 Sensitivity 88%, Specificity 99%
 Reduces time invested compared with frozen sections by 2/3
 Limitations
 Difficult to recognize cords and strands of infiltrative BCC and distinguish from stroma
 Sebaceous elands confused as basaloid islands
- Sebaceous glands confused as basaloid islands
 o C, et al. In Vivo and Ex Vivo Confocal Microscopy for Dermatologic ar
 4(1), 107 504

Clinical factors associated with subclinical spread of in situ melanoma

Shin TM, et al. J Am Acad Dermatol. 2017 Jan 7. [Epub ahead of print]

Clinical factors associated with subclinical spread of in situ melanoma Background: Subclinical spread of MIS occurs at wide frequency, ranging from 12-71% Subclinical spread = microscopic extension of tumors beyond the visible margin Shin TM, et al. J Am Acad Dermatol. 2017 Jan 7. [Epub ahead of print]

Methods ■ Retrospective, cross-sectional study of 674 melanomas ■ Treated with Mohs and MART-1 immunostaining ■ Visible melanoma and margins of 2-3mm of normal skin removed with debulking excision and sent for formalin-fixed paraffin-embedded, bread-loaf sectioning for tissue archiving and staging confirmation ■ Mohs layer then taken w / 2-3mm margin for frozen H&E and mart-1 immunostain ■ Positive margins → additional stages ■ All tumors had ≥5mm margins

	Frequency of		
Variable	subclinical spread		
All cases	215/674 (31.9%)		
Location			
Head, neck, acral, genitalia, pretibial leg	197/586 (33.6%)*		
Trunk and proximal extremities	18/88 (8.4%)		
Recurrence status			
Primary in situ melanoma	171/591 (29%)		
Recurrent in situ melanoma	44/83 (53%)**		
Preoperative size			
≤1 cm	64/259 (24.7%)		
>1 cm	151/415 (36.4%)**		
Age			
<60 years	51/195 (26%)		
≥60 years	164/479 (34%)*		
Sex			
Male	129/403 (32.0%)		
Female	86/271 (31.7%)		
Immunosuppression status			
Immunocompetent	211/662 (32%)	Shin TM, et al. J Am Acad	
Immunosuppressed	4/12 (33%)	Dermatol. 2017 Jan 7. [Epi	

Limitations

- Academic center with referral sfor large, ill-defined melanomas

- Initial smaller margins taken in cosmetically sensitive areas in the eyelids

 Histologic subtype omitted due to lack of categorization

 Not all risk factors included

 Fitzpatrick type, ethnicity, photoaging degree, % of clinically visible tumor remaining after biopsy, tumor color

Conclusion

- Subclinical spread of MIS associated with:
 Location on head, neck, acral sites and pretibial leg
 Recurrence after previous treatment
 Preoperative size > 1cm
 Increasing age (>60 years, increasing by 2% each year)
- Risk of extensions increases with each additional risk factor
- Important to consider these risk factors when triaging surgical treatment of MIS for standard excision vs a more exhaustive microscopic margin assessment Shin TM, et al. J Am Acad Dermatol. 2017 Jan 7. [Epub ahead of print

Clinical and pathologic factors associated

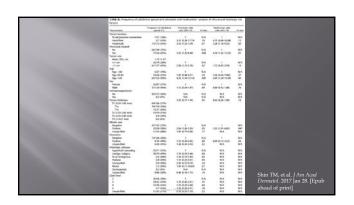
- melanoma

 More rigorous margins assessment techniques can be used to identify and remove subclinical tumor prior to reconstruction

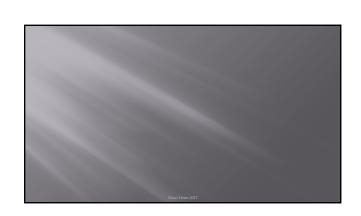
 Indications to use these techniques are not defined for invasive
- NCCN restricts consideration of exhaustive margin assessment to large lentigo maligna cancers

Methods

- MMS with frozen-section bread-loaf processing of the debulking excision with complete margins assessment of the Mohs layer with H&E and MART-1 immunostain


- with H&E and MART-1 immunostain

 11a tumors: minimum of 5-6mm margin was excised
 11b and above: minimum of 1cm excised
 11 diagnostic biopsy met criteria for SLNB, patients underwent procedure prior to MMS
 11 f Tla upstaged to SLNB eligibility during frozen section evaluation of residual tumor, patients offered SLNB prior to reconstruction
 12 After MMS, debulking excision sent for paraffin-embedded sectioning to confirm staging and archive primary tumor bin TM, et al. J Am Acad Dermotol. 2017 Jan 28. [Epub about 5 prin]


Methods

- Subclinical spread: requiring ≥2 stages of MMS to clear margins

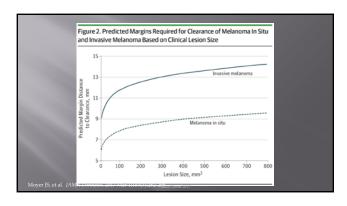
Results Subclinical spread in 83/216 melanomas Subclinical Spread associated with: Clinical Predictors • Head and neck • Recurrence after previous treatment • Size > 1cm • Age ≥ 65 years

Conclusion ■ Comparable indications for MMS and other techniques with rigorous microscopic margin assessment prior to reconstruction might apply to both invasive and in situ melanoma. Shin TM, et al. J Am Acad Dermatol. 2017 Jan 28. [Epub aboad of print]

Results

- Median potential follow up: 9.3 years; observed median time of last follow-up was 8.4 years
 834 staged excisions
 17 local recurrences
 1.4% at 5 years, 1.8% at 7.5 years, and 2.2% at 10 years

Results


- affected local recurrence rate

 For each 50mm² increase in size of the clinical lesions, there was a 9% increase in rate of local recurrence

 Periocular had 12.5x increase risk as c/w scalp, forehead, cheek, or neck

 No immunosuppressed patients had recurrence

- Mean margin
 MIS = 9.3mm
 Invasive Melanoma = 13.7mm

Conclusions

- Staged excision with comprehensive permanent section margin control of melanoma arising in chronically sun-damaged skin on the head and neck has favorable recurrence rates when melanoma margins are difficult to assess, and recurrence rates are higher with traditional techniques
- Longer follow up is necessary to monitor these patients as 36% of recurrences developed after 5 years
 Factors a/w greater margin for clearance:

 Increased lesion size

Comparison of MITF and Melan-A for Lentigo Maligna-Type Melanoma In Situ

for Lentigo Maligna-Type Melanoma In Situ lor Lentigo Maligna-Lype Melanoma In Situand Lentigo Maligna Melanoma.

■ Melan A: cytoplasmic melanocytic immunostain useful on frozen section, may lack specificity

■ Binds melan-A antigen, 22-kDa cytoplasmic melanosome-associated glycoprotein

■ Decreased sensitivity in chronically sun-damaged skin (CSDS)

■ May lead to false positives

■ Ex. pigmented keratinocytes and melanocytic dendritic processes

■ Microophthalmia transcription factor (MITF): more specific nuclear melanocytic immunostain

Study Design

- Initial debulking of clinical tumor on Wood's lamp exam, sent for permanent sections to assess further tumor invasion
 Periphery treated with MMS
 Margin size and # of stages recorded

Study Design


- processing
 CSDS also taken from ipsilateral side that was clear of lentigo, nevus or keratosis and clearly distinct from LM and/or LMM
 Neg Mohs margin obtained for frozen section and stained with H&E, MITF, and melan-A
 Examined by a board-certified dermatopathologist/fellowship-trained Mohs surgeon and at least 1 fellowship-trained Mohs
 - surgeon

 Melanocyte densities and nonspecific dermal staining noted as mild, mod, significant

Results

- □ In CSDS: melan-A mean melanocyte counts (MMC) were significantly higher than MITF MMC (13.7% vs 9.8%, p<.001).
 □ In negative margin skin: melan-A MMC was significantly higher that MITF MMC (14.1 vs 8.8, p<.001)
 The MMC for each stain approximated the retrospective CSDS control
 □ Tumor Samples: no difference in MMC with melan-A and MITF

TABLE 3. Summary of Results								
TABLE 5. OU	Control CSDS		Negati	ve Margin	Tumor			
Stain	MITF	Melan-A	MITF	Melan-A	MITF	Melan-A		
Patients	16	16	16	16	12	12		
Mean	9.8*	13.7*	8.8*	14.1*	63.5	62.4		
SD	3.5	5.9	4.2	5.0	17.7	14.9		
MAX	15.2	24.3	17.7	21.7	97.5	86.2		
MIN	3.5	5.2	2.7	6.7	41.0	41.8		

Discussion sections Consistently and reliably stain melanocytes in CSDS, negative margins, and tumors (LM and LMM) There is significant non-melanocyte epidermal staining by melan-A in negative margins and CSDS c/w H&E and MITF Assessment of melanocyte morphology, density, and pattern in frozens remained largely dependent on H&E slides with immunostains as adjunct MITF: efficient, effective alternative stain to melan-A Enhances nuclear size and pleomorphism and is convenient quantification of melanocytes Costs that time there are recessing two pipiles to melan. melanocytes Cost, stain time, tissue processing are similar to melan-A en KN, et al. Dermatol Surg. 2016 Feb;42(2):167-75

Updates in Merkel Cell Carcinoma

Merkel Cell Carcinoma

- Merkel Cell Carcinoma (MCC) Risk Factors
 Ultraviolet light
 Merkel cell polyomavirus (MCPyV)
 Advanced Merkel Cell Carcinoma
- - Transient response to chemotherapy
 Median progression-free survival ~ 3 months
 Progressive disease in 90% within 10 months

Background

- Programmed death 1 (PD1) immune inhibitory pathway
- Merkel Cell Carcinoma often express PD-L1 Merkel Cell polyoma virus (MCPyV)-specific T cells express PD-
- Pembrolizumab: Humanized monoclonal IgG4 Ab that blocks

It "Blocks the blocker" so tumor death can occur

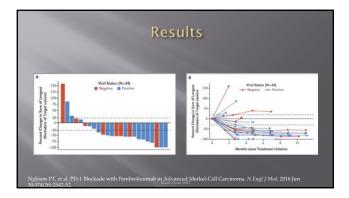
Study Design

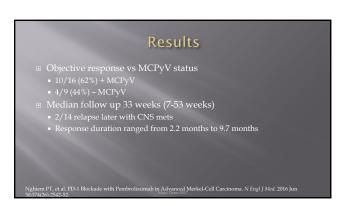
- Adults with advanced Merkel-cell carcinoma
 Distant mets or recurrent locoregional
 Not amenable to definitive surgery or radiation
 Have not received prior systemic therapy

- Normal organ and bone marrow function
 Eastern Cooperative Oncology Group performance status 0 or 1
 Relative functional
- Additional exclusion: immunosuppressed, autoimmune disease, second cancer, active CNS mets

Study Design

- Pembrolizumab at dose of 2mg/kg IV q3 weeks
- □ Pembrolizumab at dose of 2mg/kg IV q3 weeks
 Max of 2 years or until complete response or dose-limiting toxic effects or disease progression
 □ All underwent CT of abdomen/chest + CT of other areas in which target lesions occurred
 Screening, 12 weeks after therapy then q9 weeks up to 1 year
 After 1 year, q12weeks
 □ Pre- and post-treatment tumor specimen for PD-L1 immunohistochemistry
 □ Blood analysis at time of CT scan
 Serum antibodies or circulating T cells specific for MCPyV oncoproteins
 Nghiem PT, et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N Engl | Mod. 2016 Jun 0574(26):2542-52.


Study Design


- As defined by Response Evaluation Criteria in Solid Tumors, version 1.1
 Complete response: Disappearance of all target lesions
 Any pathological lymph nodes (whether target or non-target) must have reduction in short axis to <10 mm.
 Partial response: At least a 30% decrease in the sum of diameters of target lesions, taking as reference the baseline sum diameters

Results

- - 4 pts complete respons 10 pts partial response 1 w stable disease

 - 1 w stable disease
 9 w progression
 1 unconfirmed partial response
 Most response at wk 12

Results ☐ Rate of estimated progression-free survival at 6 months was 67% (95% CI 49-86%) PD-L1 more frequent in MCPyV + tumors (71% vs 25%, P= 0.049) Neither expression of PD-L1 on tumor cells nor infiltrating immune cells correlate w clinical response to pembrolizumab

Adverse Events ■ Treatment-related AEs of any grade occurred in 77% of patients Grade 3 or 4 AEs were observed in 4/26 patients (15%) Two grade 4 reactions: myocarditis and transaminitis Both had reduction in AEs upon discontinuation of pembrolizumab and initiation of glucocorticoids

Conclusion

- advanced MCC was associated with an objective response rate of
- Standard chemotherapy: median progression-free survival is 3 months w/ progressive disease developing in 90% of patients within 10 months Responses were observed in both MCPyV positive and negative tumors
- PD-L1 expression should not be used as a guide to make clinical decision regarding whether or not to treat MCC patients w PD-1

lpilimumab has efficacy in metastatic Merkel Cell Carcinoma: a case

- series of five patients

 Immunotherapy with immune checkpoint blockers such as the CTLA-4 antibody ipilimumab and PD-1 antibodies has revolutionized oncological treatment options

 MCC is an immunogenic tumor and the efficacy of PD-1 blockade has recently been demonstrated
- Retrospective analysis of five patients with metastatic MCC individually treated with ipilimumab between 2012 and 2015
- Administration of four cycles (3 mg/kg q3 weeks) was planned
- All patients had received previous surgical and radiation therapy before initiation of ipilimumab sker JK. et al. Ipilimumab has efficacy in metastatic Merkel Cell Carcinoma a case series of five patients. J motol Venezical 2017 Mars. 3 doi: 10.1111/jjc.141981. [Epidabadas/prim]

Patien t	Sex	Age at first diagnosis (years)	First diagnos is	Initial tumor localizatio n	Therapies before ipilimumab	Start of ipilimuma b	Adjuvant /additive	Number of cycles	Best respons e	PFS (months)	Therapies following Ipilimumab	OS (months)
					Left inguinal lymph node dissection and radiation, right inguinal lymph node dissection and radiation		No		PD	2.8	None	3.5
					Right inguinal/iliac/paracaval lymphadenectomy and radiation to the iliac lymph nodes						Radiation to cervical lymph nodes, nivolimumab, radiation to left paraaortcal lymph node, etoposide	
				Right lower leg, inguinal sentinel lymph node	Right inguinal lymph node dissection and radiation, excision right thigh and radiation						Radiation to right retro peritoneal lymph nodes, radiation to right renal bed	
				Left inguinal lymph nodes	Left inguinal lymph node dissection, left iliac lymph node dissection, radiation to left pelvis, low-dose interferon radiation to paraaortal lymph node		Adjuvant (radiation)				Radiation to parazortal lymphatic pathways, ipilimumab	
				Left knee, inguinal sentinal lymph	Right inguinal lymphadenectomy, radiation to the knee and right inguinal		Additive (radiation)					

Ipilimumab has efficacy in ■ Patient 1: Ipi started when imaging revealed suspicious nodes. ■ Re-evaluation s/p 2 cycles of Ipi revealed increased F-FDG uptake on PET-CT and increased LDH → developed increased retroperitoneal mets ■ Patient 2: disease relapse twice prior to Ipi which was initiated due to enlarged cervical nodes. ■ Progression from the contraction of the progression from the contraction of the con metastatic Merkel Cell Carcinoma: a case

- - Progression free disease for one year
 Cervical mets enlarged and radiotherapy performed
 Nivolimumab started due to new paraaortal node

Winkler JK, et al. Ipilimumab has efficacy in metastatic Merkel Cell Carcinoma: a case series of five patients. J Eur Acad Dermatol Venereol. 2017 Mar 3. doi: 10.1111/fdc.14193. [Epubahandofprint]

Ipilimumab has efficacy in Series of five patients Patient 3: received lpi s/p surgical resection of inguinal and iliac lymph node mets I pi stopped s/p 3 cycles due to elevated pancreatic enzymes Progression occurred a few months latera → radiation to retroperitoneal and pelvic lymph nodes Rapid disease

- Rapid disease
 Patient 4: radiotherapy of a growing paraaortal lymph node before adjuvant therapy with ipilimumab
 PFS x 1 year then increased F-FDG uptake in the retrocrural area
 Radiation and 4 cycles of Ipi
 Thereafter, PT/CT scans were without evidence of disease

JK, et al. Ipilimumab has efficacy in metastatic Merkel Cell Carcinoma: a case s Venereol. 2017 Mar 3. doi: 10.1111/jdv.14193. [Epübəliöüdəs/Fpřint]

Ipilimumab has efficacy in Patient 5: disease recurred and radiation performed to the right iliac lymph node metastases and PET scan revealed persistent uptake Ipi administered Since then

- - Since then, no tumor recurrence

Ipilimumab has efficacy in metastatic Merkel Cell Carcinoma: a case series of five patients Potential role for ipilimumab within a multimodal therapeutic

- Potential role for ipilimumato within a mutumodal accurace approach
 Estimated median progression-free survival was 12.0 months
 Favorable treatment response in pts who received Ipi after radiotherapy
 Synergism of immunotherapy and radiotherapy is a known phenomenon
 Adjuvant Ipi after resection is under clinical trial investigation in Europe
 Worthwhile to study combined therapy of Ipi with anti-PD-1

CME Question

can be predicted by which of the following? A. Location on the back B. Dark brown to black color on initial presentation C. Size > 1cm D. Immunosuppressed patient E. Male patient

can be predicted by which of the following?

- Size > 1cm

TEllocation on the head, neck, acral skin, genitalia, and pretibia ecurrent MIS preoperative size >1cm $ge \ge 60$

- Color of preoperative lesion was not assessed. Sex and immunosuppression status were not significant